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ABSTRACT

The � eld of toxicogenomics , which currently focuses on the application of large-scale differential gene expression (DGE) data to toxicology, is
starting to in� uence drug discovery and developmen t in the pharmaceutica l industry. Toxicological pathologists, who play key roles in the developmen t
of therapeutic agents, havemuch tocontribute toDGE studies, especially in the experimental design and interpretationphases. The intelligentapplication
of DGE to drug discovery can reveal the potential for both desired (therapeutic) and undesired (toxic) responses. The pathologist’s understanding
of anatomic, physiologic, biochemical, immune, and other underlying factors that drive mechanisms of tissue responses to noxious agents turns
a bewildering array of gene expression data into focused research programs. The latter process is critical for the successful application of DGE
to toxicology. Pattern recognition is a useful � rst step, but mechanistically based DGE interpretation is where the long-term future of these new
technologies lies. Pathologists trained to carry out such interpretations will become important members of the research teams needed to successfully
apply these technologies to drug discovery and safety assessment . As a pathologist using DGE, you will need to learn to read DGE data in the same
way you learned to read glass slides, patiently and with a desire to learn and, later, to teach. In return, you will gain a greater depth of understanding
of cell and tissue function, both in health and disease.

Keywords. Differential gene expression; genomics; proteomics; rodent studies; pathology; liver; research teams; microarray; toxicology; safety
assessment.

INTRODUCTION

Rapid progress in genome sequencing and in the develop-
ment of platforms to assess gene expression, protein expres-
sion and genetic polymorphisms (1, 5, 7, 15, 38, 40) has made
these tools accessible to many research teams. Genomic tech-
nology promises to revolutionize research in drug discovery
and toxicology (25, 33, 38). The power of large-scale differ-
ential gene expression (DGE) is that mRNA levels in cells
can be obtained for thousands of genes in a single experiment
(42). The technology currently requires considerable techni-
cal expertise, however. This has resulted in a team approach
with scientists of diverse backgrounds working together to
conduct toxicogenomic research. Pathologists, who have tra-
ditionally played a role in drug discovery and development,
are now needed to work in teams using rapidly evolving tech-
nologies generating massive amounts of data.

The amount of data that will be available to investigators
is unparalleled. For instance, GenBank, a public database,
contained over 3.8 million sequence records at the end of the
year 2000 and this database doubles in size approximately
every year (24). The goal is to use this wealth of data to
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determine how different cellular components work together
in health and disease (7, 31). The data may reveal novel drug
targets, surrogate markers of ef� cacy or toxicity, or clues as to
mechanism of toxicity. Traditionally, research has been on a
1-gene-1-protein at a time basis (the vertical approach)
(49). In the genome era, horizontal investigations involve
functional characterization of a large portion of the genes in
a genome using single high-throughput tools. The horizontal
and vertical approaches are complementary. Horizontal
approaches offer the advantage of global analyses but do
not provide conclusive answers. The vertical approach
more appropriate to investigation of speci� c hypotheses,
lacks ef� ciency, but can often answer questions raised by
horizontal studies.

Structural genomics is directed towards understanding of
the physical makeup of genomes, while functional genomics
studies the function of the genes and gene products. Toxi-
cogenomics is a subdiscipline of functional genomics using
genomic tools to evaluate toxicity caused by pharmaceutical
or environmental chemicals. DGE is already being used to
complement histopathology and clinical chemistry in assess-
ing toxicity. Interpreting mRNA data, in relation to whole-
animal physiology, is to truly practice molecular pathology.
As pathologists gain experience in this new discipline, toxi-
cogenomics is revealed to be a familiar approach to investiga-
tive pathology, but using new and potentially powerful tools.
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FIGURE 1.—Simpli� ed diagram of the complex interplay of the � ow of drug discovery and development , new technologies and the role of pathologists.

Although the information revolution may appear daunting,
toxicogenomics has many features in common with pathol-
ogy. Learning to function in the toxicogenomics team re-
quires an understanding of the strengths and limitations of
these new and evolving research techniques. Pathologists
engaged in this learning process can play an essential role
in integrating knowledge of cell biology, chemical toxicity,
whole animal physiology, species-speci� c diseases, and other
factors that impact interpretation of data derived from dif-
ferential gene expression (DGE) studies. Pathologists and
histotechnologists can address basic anatomical and physio-
logical questions and monitor tissue selection quality. More
importantly, pathologists provide detailed morphologic cor-
relates with DGE data. Such correlates are considered critical
by the authors.

In this article, we provide a brief introduction to gene ex-
pression array technology. This is followed by a description
of one author’s (KTM) approach to DGE data interpretation.
A more detailed overview of DGE technology is provided as
an appendix for those interested in delving deeper into this
fascinating revolution in biology.

PATHOLOGISTS IN DRUG DISCOVERY AND
THE ‘OMICS’ REVOLUTION

In a review of the process of drug discovery and de-
velopment, Charles Smith (45) indicated clear roles for
pathologists in later stages of drug discovery and in drug

development. Often the major role of pathologists is in
detecting or predicting untoward responses to new therapeu-
tic agents. However, toxicologic pathologists are also appro-
priately members of research teams in the early stages of
drug discovery. The ‘omics’ revolution provides an opportu-
nity for pathologists to increase their contribution to drug dis-
covery and development. The new technologies are radically
changing biological research and providing an opportunity
for pathologists to shape the development of toxicogenomics
(Figure 1).

Role in Study Design
The role of the pathologist begins with study design. The

pathologist is aware of the effects of feeding patterns, light,
circadian rhythms, cage effects, and other stresses on the ani-
mals that affect gene expression. The experimental design
should minimize these potential confounders. The pathol-
ogist also understands the substructure and complexity of
the tissues under study. Tissues are not uniform (only 80%
of the cells in the liver are hepatocytes and hepatocytes are
not uniform throughout the lobule). Therefore some thought
needs to be given to what tissues and what portions of tissues
need to be collected. The collection of speci� c areas of tissue
for DGE and for morphology should be part of the experi-
mental design. For example, one would expect different DGE
patterns from sampling whole kidney versus cortex, or renal
medulla following exposure to a renal toxin.
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Role in Tissue Sampling and Morphology
A complete necropsy with histopathologic evaluation of

representative samples of key organ systems provides the
morphological anchor and secondary corroboration of spe-
ci� c gene expression changes. Electron microscopy and im-
munohistochemistry can provide more detailed evidence of
cellular changes to place DGE in perspective. In situ hy-
bidization may identify speci� c cell types expressing target
genes and allows detection of nonspeci� c hybridization that
could be misinterpreted. Laser capture microdissection adds
another tool to correctly identify and assess DGE patterns of
speci� c cells (9).

Common morphological endpoints can be correlated with
DGE. Apoptotic and mitotic cells are easily quantitated on
H & E stained slides and would be expected to correlate
with gene pathways that control these processes. Specialized
stains such as TUNEL (terminal uridine deoxynucleotidyl
transferase nick end labeling) gels demonstrating DNA “lad-
dering” or the staining of annexin V are also markers for apop-
tosis. PCNA and BrdU stains provide quantitative measures
of cell proliferation. Antibody-speci� c staining for proteins
can provide morphological conformation for DGE-identi� ed
pathways related to oxidative stress or DNA repair. An anti–
heme-oxygenase 1 (HO-1) immunohistochemical stain was
used to visualize the protein product of the upregulated HO-1
gene (Figure 2) in cells treated with potassium bromate (13).

In vitro systems also bene� t from morphologic exami-
nation. Measurement of LDH, trypan blue uptake and var-
ious measurements of ATP or NADH levels by oxida-
tion/reduction of speci� c dyes provide only quantitation of
cell viability. Histopathology of the cells can provide addi-
tional knowledge to aid in the interpretation of DGE data.

Role in Data Interpretation
Pathologists are in a unique position to interpret the under-

lying processes leading to complex DGE patterns following
exposure to xenobiotics. Some xenobiotics induce their own
metabolism, disturb homeostatic pathways and cause toxic-
ity, all of which have the potential to in� uence DGE. Shifts
in cellular populations may in� uence DGE patterns. For ex-
ample, following chemical exposure, the liver response may
include a mixture of both living and dead cells as well as
in� ammatory in� ltrates. The RNA from exposed animals
re� ects this cellular mixture whereas controls lack the in-
� ltrate. Another example is the comparison of colon cancer
samples with normal colon that revealed more connective tis-
sue and smooth muscle in the control tissue (37). Therefore,
more highly expressed transcripts in normal tissue readily
identi� ed as of smooth muscle or connective tissue origin
were excluded from the DGE analysis (37). Knowledge of the
morphology and composition of control and treated tissues
helps guide the DGE analysis.

The pathologist bene� ts from the investment in time in
understanding basic intermediary metabolism and biochem-
istry, as well as the molecular biology of transcriptional con-
trols. This basic information must then be updated with the
constantly growing body of literature that surrounds each
gene. Gene pro� les often represent highly integrated cellular
pathways. Gene analysis is more informative when the ana-
lytical approach includes gene linkages or cellular pathways.
The reward for this integrative synthesis of morphology,

physiology, pathogenesis, molecular biology, and biochem-
istry will be enormous.

The authors’ position is that toxicologic pathologists are
ideally suited to undertake interpretation of DGE data. We
must undertake this challenge energetically if we are to in� u-
ence the outcome of the ‘omics’ revolution with respect to its
impact on toxicology. It is hoped that toxicologic pathologists
will also help to keep the “Bio” in Bioinformatics through
positive in� uences on the evolution of this new and critical
discipline that is currently being predominately in� uenced
by statisticians and mathematicians. Learning to read DGE
array data is a great place to start.

GENE EXPRESSION ARRAY DATA

Gene expression microarray technology uses the concept
that mRNA is a complementary copy of the DNA coding
region of its respective gene and will bind to complemen-
tary strands of DNA (42). DNA sequences from hundreds
or thousands of genes can be attached to solid media such
as glass or plastic slides. cDNA is made from the mRNA
from treated or control cells and labeled with different � uo-
rescent/radioactive markers. The cDNAs are allowed to com-
petitively hybridize to the DNA or oligonucleotide probes on
the slides. Using lasers that excite the speci� c dyes and de-
tectors that convert the light to electrical signals in the case
of � uorescent markers, one scans the slides for signals from
thousands of genes. The mRNA expression levels for each
of these genes is compared between the treated and controls
(42). Other technologies, including those used by the authors,
are comprised of nylon membranes with cDNA probes bound
to the membrane as discrete dots that are hybridized to ra-
dioactive (generally 33P or 32P) cDNA copies of the mRNA
population being investigated (Figure 3).

Gene expression often refers to the amount of the respec-
tive mRNA in cells, but downstream protein activity, in the
majority of cases, represents the functional aspects of gene
expression. Gene expression is regulated at several levels in-
cluding (1) mRNA transcription, (2) processing, (3) trans-
port, (4) degradation, (5) protein translation, and (6) protein
activity. Gene expression provides a snapshot of the relative
mRNA abundance’s after steps 1 through 4. Western blots
and techniques for assessing the posttranslational activity of
a protein, such as electrophoretic mobility shift assays, com-
plete the picture. In some cases, mRNA expression is a sur-
rogate marker of gene function, because many genes are reg-
ulated at least in part at the level of transcription. It is critical
when interpreting DGE data to account for the dynamics of
these transcripts. Each transcript has a different half-life con-
trolled by many factors including the mRNA sequence (2) and
by a number of mRNA binding proteins. Translation is also
regulated by many different factors (34) including the avail-
ability of the translational machinery (ribosomes) and neces-
sary substrates (eg, transfer RNA and speci� c amino acids).
An array of metabolic pathways provides both direct and in-
direct feedback to both mRNA transcription and translation.

There are limitations of DGE pro� ling studies in toxicol-
ogy (15). First, many toxicants and drugs initiate toxicity by
binding to proteins or altering macromolecules, not by di-
rectly altering gene expression. Moreover, multiple cellular
signaling pathways alter the expression of the same gene
products, making it dif� cult to identify the affected pathway
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FIGURE 2.—A & B: Comparison of gene expression data for HO-1 and HSP70 genes to contrast raw intensity differences against expression of results as fold
change (ratio). The normally low level of HO-1 expression exaggerates the treatment response when viewed only as a ratio. The response by HSP70 exhibits a
higher overall signal intensity following treatment, and thus probably expression levels, than HO-1. The latter observation is not evident from ratios alone. C: HO-1
immunostain of control rat peritoneal mesothelial cells, D: HO-1 immunostain of cells treated with 3 mM KBrO3 for 24 h. The use of antibody staining con� rmed
the differential gene expression-identi � ed change in HO-1 expression vs control.

from DGE alone. Finally, most xenobiotics act through mul-
tiple mechanisms that depend on dose, timing, and duration
of exposure. Variations in age, gender, temperature, light,
diet, feeding, and hormonal status also affects DGE. DGE
results must be integrated with the effects of toxicity within
the context of the whole organism, but such interpretation is
at the heart of pathology.

ANALYSIS OF DGE DATA SETS

Con� rmation of DGE
Comparisons between treated and control animals for

thousands of genes requires sophisticated analysis (52). The
� eld of bioinformatics is evolving to provide the mathemat-
ical and statistical support for the evolving � eld of genomics
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FIGURE 3.—Nylon DGE arrays, spotted for 1200 genes and hybridized against cDNA prepared from rat adipocytes and labeled with 33P. Intensity of black spot
indicates signal strength. Overlay generated by Clontech AtlasImage software during array alignment.

(24, 41). DGE results may include both false positive and
false negatives, the number of which depends on the number
of genes being analyzed, the statistical methods, the level of
signi� cance, the magnitude of the response and other factors.
Replicates in the number of samples, having replicate gene
probes on chips and running replicate chips help increase
con� dence in the results. Because of the cost of the chips, it
is common to pool samples prior to DGE analyses. However,
pooling data from replicates on chips is more reliable (29).
Although some redundancy is built into several platforms,
such as the Affymetrix chip, this does not alleviate the need
to assess the variation in expression intensities obtained
from different chips and different complex mRNA probes
(12). Data processing or elegant protocols cannot substitute
for the requirement of multiple independent determinations
of the expression intensities (12).

Regardless of the DGE platform and statistics employed,
altered expression should be con� rmed by an independent
method. Common methods to con� rm altered mRNA levels
are by Northern blotting, standard semiquantitative reverse-
transcription PCR (RT-PCR), and quantitative real-time PCR
(TaqManTM). Northern blotting has long been considered the
gold standard for assessing relative levels of an mRNA when
comparing multiple experimental groups. However, it is cum-
bersome, although relatively easy to perform and the sensi-
tivity of the assays is several orders of magnitude less than
the PCR assays.

Standard RT-PCR analysis, although more sensitive than
Northern blotting, requires multiple steps following separa-

tion of the PCR products on an agarose gel and is subject
to contamination. Thus, RT-PCR is inadequate for obtaining
quantitative data. Presently, the most widely used method
for con� rming DGE data is by a real-time quantitative PCR
method known as TaqMan (16). In this assay, 2 gene-speci� c
oligonucleotide primers are used to amplify the gene of inter-
est in the presence of a gene-speci� c, � uorescently labeled
probe that binds between the 2 primers. A DNA polymerase
cleaves the probe, the reporter dye is separated, and a signal
is generated. With real-time monitoring of the PCR reaction
by a � uorescence reader the starting copy number of the
gene of interest can then be determined based on the cycle
at which the PCR signal is � rst detected. The PCR reaction
is usually done in a 96- or more well plate, thus making it
possible to test numerous conditions in a single experiment.

Data Normalization
It is important that DGE data generated by microarray anal-

ysis be processed to determine whether the putatively differ-
entially expressed genes are really different. Potential sources
of variability in microarray experiments include mRNA
preparation, transcription, labeling, PCR ampli� cation of
clones, variation in spotting (pin geometry, spotting volume,
target � xation to membrane), hybridization parameters, slide
or membrane inhomogeneities, nonspeci� c hybridization,
nonspeci� c background, and image analysis (43). The pathol-
ogist also helps assure that animal disease, collecting differ-
ent lobes or portions of tissue, circadian rhythm, and other
factors are also considered as potential sources of variability.
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Several common normalization approaches help reduce
variability (18). One assumption is that the total mass of RNA
labeled in each reaction is equal. The spot intensity, although
for any particular spot may be higher on one membrane than
another should average out over hundreds or thousands of
spots. Thus, one can normalize to one. Another approach is
to normalize data using a set of housekeeping genes whose
expression is assumed to be constant and independent of treat-
ment. Therefore, adjusting intensity levels so that the ratio of
the “housekeeping” genes between different membranes is
close to 1 can normalize the membranes. Caution should be
exercised because experimental data suggests that there really
is no universal set of housekeeping genes whose expression
remains constant under all treatment conditions. In fact, a re-
cent report states that housekeeping genes tend to be loosely
regulated, and often exhibit great (ie, four-fold) differences
in expression without functional consequence to the cell (51).

Weakly Expressed Genes and the Fold-Change Problem
One problem encountered using DGE technologies is that

low abundance genes, if detectable at all, give low signals.

FIGURE 4.—Partial List (35/1185) of gene expression data for comparison of adipocytes treated with insulin versus no additional insulin. The � les are present as
output from software developed to statistically compare two group (n 3 in this case), using local regression (see Crosby et al, 2000). This software is available for
download at no cost (ftp://ftp.santafe.edu/pub/kepler/). Key: # gene number on Clontech Array list (see www.clontech.com, Rat 1.2 nylon array); MLI mean
log intensity, indicating gene signal relative to entire population signal; Ratio control/treated; Up-group, 2 indicates treated upregulated compared to control;
gene name can be checked against membrane location code, see www.clontech.com. Two genes are highlighted as examples used in the diagrammatic speculative
interpretation of cellular responses, shown in Figure 5.

Fold-changes are deceptive for genes that are expressed at
close to background levels. For example, if the control inten-
sity for gene A is 1 (arbitrary units), and for the treated is 10,
the ratio would be a 10-fold induction. However, if the control
value were 4, the fold-change would be a 2.5-fold induction.

Meaningful expression patterns can involve groups of tran-
scripts whose relative abundance changes at levels consider-
ably less than 2-fold but ratio measurements less than 2-fold
are often considered to be unreliable in an isolated microarray
experiment (22). The authors prefer a statistical cut-off (eg,
p < 0.05) to a ratio limit (eg, >2-fold). It is particularly valu-
able to have information on transcripts from genes expressed
at low levels because many of the regulatory components of
the cell are expressed at low levels (19). Data from in situ
hybridizations seem to suggest that the normal variance for
many tightly regulated tissue-speci� c genes is within 20 to
30%. However, there are 2- to 4-fold random � uctuation for
many genes in yeast (11, 27).

The number of and complexity of genes that are con-
sidered up- and down-regulated, even in a simple experi-
ment, can be daunting. Many gene names give little clue as

http://www.clontech.com
http://www.clontech.com
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FIGURE 5.—Example of DGE analytical software (Spot� re; insert disclaimer!). Selection of appropriate software for your needs is critical and learning to use
the software effectively takes time. This image shows the adipocyte, 1200 gene data set present in a 3-D xy format, with signal strength, p-value, and ratio (control
versus treated) on as the respective axes. The short arrow indicates s-adenosymethion e synthetase, which is upregulated 8-fold, has a strong signal, and the ratio
is highly signi� cant (p < .00001). The long arrow and broken arrows refer to other up (stearyl Co-desaturase) and down (steroidogenic acute regulatory protein,
STAR) respectively, which also stand out as responding to treatment. With complex data sets, including dose and time series, such software provides an ef� cient way
to triage the data prior to time-consuming interpretation and costly con� rmation.

to their function and many genes have multiple synonyms.
For example, the trefoil protein gene (the common red and
white clovers are from the trefoil family) would seem to have
little relevance for toxicology. However, there are numerous
web sites such as (http://www.ncbi.nlm.nih.gov/) that easily
provide relevant literature on this gene. This National Library
of Medicine (NLM) web site shows that trefoil protein is anal-
ogous to human pS2 (BCEI gene) an estrogen-inducible gene
expressed in human breast cancers. A brief summary and rel-
evant recent articles on this gene can be obtained under the
OMIM link in the NLM web site.

A review of the summary of the up- and down-regulated
genes helps organize your thoughts. Before you start looking
at your � rst data set, there are many examples of gene
expression data on the Internet (World Wide Web). An
excellent example is provided by the following web site:
[http://www.sciencemag.org/cgi/content/full/283/5398/83?
maxtoshow &HITS 10&hits 10&RESULTFORMAT
&author1 Iyer&searchid QID NOT SET&stored search

&FIRSTINDEX &fdate 10/1/1998&tdate 12/31/2000].
It is strongly recommended that you try your hand at
interpreting such data sets before embarking on a career in
toxicogenomics. It is also important to be cognizant of the
issue of data quality before interpreting DGE data. There are
number of stages of data analysis directed towards increasing
con� dence in both the quality and relevance of DGE data,
which are presented in order of increasing importance, as
follows:

1. Raw array data, with or without normalization.
2. Statistically con� rmed array data, based on multiple repli-

cates, appropriate controls and accepted rules of statistical
analysis. Cluster analysis is very helpful in time course
studies.

3. Con� rmation using second technique, such as Northern
analysis or RT PCR (TaqManTM) with a range of exper-
imental designs that address crude signal all the way to
measuring mRNA copy number.

http://www.sciencemag.org/cgi/content/full/283/5398/83?maxtoshow=%26HITS=10%26hits=10%26RESULTFORMAT=%26author1=Iyer%26searchid=QID
http://www.sciencemag.org/cgi/content/full/283/5398/83?maxtoshow=%26HITS=10%26hits=10%26RESULTFORMAT=%26author1=Iyer%26searchid=QID
http://www.sciencemag.org/cgi/content/full/283/5398/83?maxtoshow=%26HITS=10%26hits=10%26RESULTFORMAT=%26author1=Iyer%26searchid=QID
http://www.ncbi.nlm.nih.gov/
http://www.sciencemag.org/cgi/content/full/283/5398/83?maxtoshow=%26HITS=10%26hits=10%26RESULTFORMAT=%26author1=Iyer%26searchid=QID
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FIGURE 6.—Cluster analysis showing gene expression changes with time in cells following treatment. In this � gure, red represents decreased expression and green
represents increased mRNA following treatment.

4. Con� rmation of an increase in downstream protein.
5. Con� rmation of appropriately altered protein activity (eg,

enzyme activity). Final con� rmation of the relevance of
gene expression data is clearly a painstaking but poten-
tially worthwhile process.

AN EXAMPLE OF DGE INTERPRETATION

A small gene expression study of 1,185 genes was un-
dertaken to explore gene expression changes in primary rat
adipocytes exposed to a high glucose environment with or
without added insulin (Gottschalk et al, unpublished obser-
vations). These data are presented here as a simple exam-
ple of an approach to analyzing data. Following exposure of
these cells for 8 hours, the DGE data were developed using
Clontech Rat 1.2 arrays (13). A partial list (35/1,185) of gene
changes is presented (Figure 4). The � rst point to be made
from Figure 4 is that you will have to become familiar with
interpretation of lists. The 2 genes highlighted in this � gure
demonstrates two important facts:

1. You will encounter many genes about which you know
little or nothing and you will have to decide which
ones to study. In this case, the pathologist reading these
changes had never heard of stearyl CoA desaturase, or the

desaturase system. The pathologist is now a little more
enlightened.

2. You will encounter old friends, for example transke-
tolase, which is critical in thiamine de� ciency (eg,
polioencephalomalacia of ruminants). Starting with the
genes or biochemical pathways with which you are
familiar will help overcome the stress of the numerous
genes or pathways with which you are not familiar. The
morphology can draw your attention to gene expression
components of relevant pathways (apoptosis, cell growth
genes in hyperplasia).

The use of gene expression analysis software aids in
the investigation of DGE data sets, especially if they are
very large or are comprised of numerous exposure con-
centrations or time points. An example of such software
is shown in Figure 5, using the same data set listed in
Figure 4. A cluster analysis is shown in Figure 6. Such
software permits comparisons of multiple variables in vi-
sual formats that are pleasing to pathologists, having a vi-
sual bent. If you wish to experiment, download both data
(eg, Iyer) and software [http://www.clustan.com/] from the
Internet and try these procedures for yourself (strongly rec-
ommended).

http://www.clustan.com/
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FIGURE 7.—S-ADM s-adenosylmethionine synthase; RNA pol I & II RNA polymerase I and II; eIF-2Bc eukaryotic initiation factor 2B c ; RPS5 40S
ribosomal protein S5; GAPDH glyceraldehyde 3-phosphate dehydrogenase ; KCR1 potassium channel regulator 1; KV9.3 shab-related delayed recti� er potas-
sium channel KV9.3; PCP potassium channel protein; SCD2 stearyl-CoA desaturase 2; HMPS hexose monophosphat e shunt; TK Transketolase; SCD2
Stearyl Co-A Desaturase 2; TIM23 Translocase of inner mitochondrial membrane 23 homolog; PFK—phosphofructokinase ; COT carnitine octoyltransferase;
PMEII—peroxisomal multifunctional enzyme type II; ECH mitochondrial enoyl-CoA hydratase; 3-2TECI mitochondrial 3-2trans-trans-enoyl-CoA isomerase;
NAP nucleosome assembly protein; HPRT hypoxanthine guanine phosphoribosyltransferase .

Finally, you have to examine the data (Figure 4) and deter-
mine what they mean for cell or tissue function. In this case,
the majority of these responses are consistent with known re-
sponses of adipocytes to insulin found in basic biochemistry
texts (36). The DGE data were consistent with increased glu-
cose catabolism via glycolysis and Krebs cycle and the hex-
ose monophosphate shunt. The increased use of glucose was
combined with increased synthesis of glycogen, triacylglyc-
erol, and unsaturated fatty acids. There was also an increase in
protein and DNA synthesis. The DGE was consistent with de-
creased gluconeogenesis, fatty acid uptake and oxidation, and
cholesterol and steroid synthesis. One of the authors (KTM)
interpretations of the DGE data is shown diagrammatically
(Figure 7). Visual representation of the complex biological
processes is helpful in understanding and communicating the
results.

Although many of these changes are consistent with in-
sulin treatment, they clearly require further con� rmation.
The development of such a picture, however, provides guid-
ance to the research team in the form of testable hypotheses.
This is a task to which experimental pathologists are ideally
suited. Such analyses, combined with pattern recognition ap-
proaches, such as those reported by Burczynski et al (8) will

provide effective means to extract and apply information in
large-scale gene expression data sets. These technologies are
also being used for in vivo assessment of tissue responses.

DISCUSSION

The analysis of DGE patterns derived from healthy/control
and pathological situations will almost certainly provide a
valuable tool in the discovery of therapeutic targets and in the
development of diagnostic markers of toxicity. Furthermore,
the use of such techniques should place the classi� cation of
drug side effects and adverse reactions on a more rational
and mechanistic basis and eventually allow patients to re-
ceive drugs appropriate for their genotype (7). It is important,
however, to point out that transcript pro� ling is absolutely de-
pendent on “one gene at a time” biochemical toxicology and
molecular biology to determine the role of transcriptional
responses in altering phenotype (35).

DGE has limited value when used in isolation. Morpho-
logical and clinical chemistry tools are helpful in placing the
DGE data in perspective. However, the use of DGE arrays is a
power tool for getting out side of the box of your thinking; in
our experience it always generates surprises and leads to new
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understanding of cell and tissue responses, thus proving very
enlightening. The identi� cation of molecular � ngerprints for
speci� c mechanisms of toxicity is another area that will be
a key task for toxicologists and pathologists working in this
area for the foreseeable future (8, 35).

Toxicogenomics research is exciting because one is work-
ing in a team with diverse areas of expertise where the pathol-
ogist can play an important role. The pathologist must learn
to function in the toxicogenomics team. The � rst step is
to gain an understanding of the various aspects of the re-
search process. This means attending meetings, participat-
ing in study design and learning new terminology. However,
the pathologist brings a unique training and background to
the team. Most team members have in-depth training in one
area, whereas pathologists are generalists with training in bio-
chemistry, nutrition, anatomy, disease processes, and molec-
ular biology.

In the next decade, the postgenomic era, pathology and
pathology departments will undergo a series of changes that
will rede� ne the role of the pathologists (3). Training patholo-
gists in pathology informatics, bioinformatics, and genomics
is critical to ensure overall leadership of pathology in the
postgenomic era. For many of us today, our training will be
on the job. Fortunately, the broad in-depth training of the
current experimental pathologists puts them in an excellent
position to join the genomic revolution with other scientists
who are facing the same dilemma of rapidly evolving tech-
nologies and an unparalleled amount of new information.
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APPENDIX

BRIEF OVERVIEW OF DGE TECHNOLOGY
AND DATA ANALYSIS

The cost, percent coverage of the genome, and the sensitiv-
ity of the method need to be considered in selecting a platform
for gene expression. Sensitivity is important, because 90 to
95% of mRNA transcripts in a cell are present at 5 or fewer
copies per cell (Table 1). These low copy mRNAs make up
only 30 to 50% of the total cellular mRNA mass (2, 6, 54).
These genes are important because many of the most tightly
regulated regulatory components of cells are expressed at low
levels (19). In contrast, cellular maintenance or housekeep-
ing gene transcripts are generally present in moderate levels
of about 10 to 50 copies per cell (51).

The methods for surveying the differential gene expression
(DGE) of the transcriptome technologies can be grouped un-
der 2 broad subdivisions. A closed DGE technology is when
the genes of inquiry are predetermined by their inclusion on
the slide (or chip). The 2 most common closed systems are
microarray hybridization technologies and quantitative poly-
merase chain reaction (qPCR or TaqMan). Open architec-
ture systems, in contrast, require no a priori comprehensive
knowledge of the transcriptome. Both open and closed sys-
tems have merits and drawbacks, but are complementary.

CLOSED ARCHITECTURE SYSTEMS

Closed DGE discovery platforms are commercially avail-
able and have relatively high throughput. Disadvantages in-
clude variable coverage of the transcriptome and, in some
cases, the relatively high cost. However, these nucleic acid
microarrays, or DNA chips may revolutionize genetics in the
same way that silicone chips revolutionized the computer in-
dustry (31). DNA microarrays contain hundreds to thousands
of gene-speci� c sections of DNA (probes) and are gener-
ated by 1 of 2 basic methods. cDNA arrays are produced
by depositing 200 to 1,000 base pair (bp) sections of DNA
(the probes) derived from PCR products or plasmids onto
a sold support, such as nylon membranes or glass or plas-
tic slides. Typically, each spot contains 1 to 10 nanograms
of DNA, ensuring that saturation does not occur during hy-
bridization with the heterogeneous population of labeled
cDNAs from treated and control cells. The cDNAs are
synthesized from the total mRNAs collected from animals or
cell cultures with different dyes used to distinguish control
and treated cells. Oligonucleotide arrays are synthesized,

TABLE 1.—The populations of mRNA molecules in a typical mammalian
cell.

Copies per cell Number of different Total number of
of each mRNA mRNA sequences mRNA molecules

sequence in each class in each class

Abundant class 12,000 4 48,000
Intermediate class 300 500 150,000
Scarce class 15 11,000 165,000

(From Reference 2, p 369.
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base-by-base, on a glass slide in situ using photolithogra-
phy. The oligonucleotides are typically 20 to 25 bp in length,
and each spot contains over a million copies. In both cases,
probes are designed from sequence located near the 3 end of
the gene, which is the most variable area of the gene. This is
critical for the speci� city of the gene. Typically for oligonu-
cleotide arrays, multiple probes per gene are placed on the
array, designed to complement regions from several exons of
the gene. In addition, multiple negative control, consisting of
oligonucleotides with a 1 bp mutation are also synthesized.
Both types of arrays are hybridized, usually overnight, with
� uorescently- or radioactively-labeled heterogeneous target
prepared from 1st strand cDNA synthesis of the total mRNA
population for a particular treatment group. The arrays are
scanned (� uorescently labeled) or are exposed to phospho-
rimager screens and then scanned (radioactive label). Com-
puter software packages and statistical testing are then used
to identify genes that are differentially expressed.

Advantages of the nylon membrane arrays are affordabil-
ity, sensitivity, and the ability to reprobe them after stripping.
Disadvantages include low spot density and the requirement
that each labeled target population must be hybridized to
a separate membrane. Advantages of the glass slide based
cDNA arrays are high spot density coupled with the ability
to hybridize both a control and an experimental sample on
the same slide, thus removing the slide-to-slide variability
encountered while using nylon arrays. Fluor � ips or revers-
ing dyes between controls and treated are needed to eliminate
differences due to dye incorporation. Also, glass slides are rel-
atively economical if developed in-house. Advantages of the
oligonucleotide arrays include the incorporation of negative
controls for each gene and high spotting density. The major
disadvantage is the high cost of the commercially available
gene chips but the costs are dropping rapidly.

OPEN ARCHITECTURE SYSTEMS

Open DGE discovery platforms present the advantage of
whole-transcriptome coverage. Disadvantages include the
relatively low throughput and the high degree of dif� culty
in carrying out the experimental manipulations. Several open
platforms exist including differential display (17), represen-
tational difference analysis (14, 20), serial analysis of gene
expression (48), GeneCalling (44), total gene expression
analysis (47), rapid analysis of gene expression (50), and
restriction enzyme analysis of differentially expressed se-
quences (39). Several are available commercially, either as
prepackaged reagents for in-house use, or as a contract ser-
vice performed by the vendor.

Differential Display
Differential display (30) is the progenitor technology of

all current major technologies for transcriptome pro� ling.
Differential display of mRNA is a technique where the
mRNA species expressed by cells are reverse transcribed
and then ampli� ed by many separate polymerase chain re-
actions (PCRs) (17). PCR primers and conditions are chosen
so that any given reaction yields a limited number of ampli-
� ed cDNA fragments, permitting their visualization as dis-
crete bands following gel electrophoresis (53). Included in
the PCR reaction is a radioactively labeled nucleotide, which
allows visualization of the PCR products after electrophoretic

separation. The radioactive bands unique to a particular treat-
ment group are then excised from the gel and are re-ampli� ed,
this time in absence of the radionucleotide, subcloned, and
sequenced. Advantages of differential display include the rel-
atively low cost compared to other DGE technologies and
the ability to compare multiple groups, in parallel, simulta-
neously. A particular problem with differential display is a
high rate of false positives. This platform is commercially
available from GeneHunter Corporation.

Representational Difference Analysis (RDA)

A subtractive hybridization-based approach to DGE pro-
� ling was reported in 1994 (20) and later modi� ed to signif-
icantly reduce false positives (14). To perform RDA, RNA
from 2 different cell populations, a treated and a control, is
converted into cDNA and then fragmented using restriction
enzymes. After cleanup, different oligonucleotide linkers are
ligated to the ends of the 2 different cDNA populations, and
the cDNAs are ampli� ed by PCR. The resulting amplicon
pools are labeled with either radioactivity or with biotin. Us-
ing an excess of biotin cDNA, the 2 cDNA populations are
mixed together, denatured, and are allowed to reanneal. Cap-
ture of the biotin label removes all of the cDNA species that
are present in both control and treated, leaving only those
species unique to the treated sample. Usually, several itera-
tions of this process are necessary to isolate most of the unique
cDNAs. A modi� cation can be used to identify down regu-
lated genes. Although this method does not produce quan-
titative data, a wide range of expression differences (2- to
80-fold) can be detected as veri� ed by Northern blots with
good sensitivity. Transcripts representing only 1% of a cell’s
mRNA population can be identi� ed (46). The drawbacks are
that the technique is technically demanding and is prone to
high rates of false positives and negatives if not properly
performed (21). Recently, a strategy has been reported that
selects genes expressed at low abundances (26). A modi-
� ed version of this platform is commercially available from
Clontech.

Serial Analysis of Gene Expression (SAGE)

SAGE is a sequence-based DGE technology that identi-
� es differentially expressed genes and, unlike other open ar-
chitecture methods, quanti� es the level of expression (48).
Double-stranded cDNA is synthesized using a biotin-labeled
oligo d(T) primer. After digestion of the cDNA with a
frequent-cutting restriction endonuclease, their biotin tags
capture the 3 -most end of the cDNA fragments. Spe-
ci� c adapters are ligated to the cDNA fragments and the
cDNAs are again fragmented with a different restriction en-
zyme to fragments consisting of a short section of linker DNA
attached to a 11-base pair portion of the differentially ex-
pressed cDNA. Linker DNA is removed and 25 to 50 of
the resulting speci� c sequence tags are concatenated and se-
quenced. The result of this procedure is a library of clones
where each clone includes a short, unique tags for 20 or
more genes and it is possible to generate data points for thou-
sands of genes (10). The procedure is quantitative in that the
number of times a given tag shows up on a sequencing run
allows enumeration of the number of copies of a particular
mRNA species. (48). The coverage and sensitivity of SAGE is
dependent upon the number of concatener clones sequenced.
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Computer simulations predict the likelihood of detecting a
transcript present at three copies per cell, assuming a total of
300,000 cellular transcripts, to be 92% if a total of 300,000
tags, or 10,000 to 15,000 clones are sequenced (4, 32). The
primary advantage of SAGE over other technologies is that
it is quantitative. Disadvantages include the complexity of
the experimental manipulations required and the number of
tags that must be sequenced in order to get signi� cant cov-
erage of the transcriptome. In a recent report, genes ranked
high by the SAGE generally showed high-intensity scores in
GeneChip analysis, although there was relatively poor corre-
lation among genes with lower fold changes (23). This plat-
form is commercially available from Invitrogen.

Other Open Systems
GeneCalling (44) is a DGE platform that relies more ex-

tensively on the restriction enzyme digest concept. GeneCall-
ing covers approximately 95% of an expressed genome. This
technology is available as a contract research service from
Curagen. Total gene expression analysis (TOGA) is another

DGE platform that is restriction enzyme-based (47). A sen-
sitivity of at least 1/100,000 is claimed and gene coverage
of 60% is reported. However, performing up to four itera-
tions with different restriction enzymes, up to 99% coverage
is possible. Rapid analysis of gene expression (RAGE) sim-
ilar to SAGE, can be used in a targeted manner to search for
known genes (50). In this procedure, unique, gene-speci� c
tags averaging 128 bp are generated from each cDNA
by poly(A) selection and digestion with two restriction en-
donucleases, ligated to common primer binding sites, am-
pli� ed by PCR, and are electrophoretically separated. The
procedure is relatively quantitative in that the intensity of
the amplimer band on the gel is a relative measure of the
frequency of the corresponding mRNA in the total popu-
lation of mRNAs. Other DGE technologies include restric-
tion enzyme analysis of differentially expressed sequences
(39) and ampli� cation of double-stranded cDNA end re-
striction fragments (28). These newer technologies are re-
portedly very sensitive but their utility for research teams is
unproven.


